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Abstract Kinetics of polydomain spinodal ordering is studied in alloys of AuCu3 type. We
introduce four non-conserved long-range order parameters whose sum, however, is con-
served and, using the statistical approach, follow the temporal evolution of their random
spatial distribution after a rapid temperature quench. A system of nonlinear differential
equations for correlators of second and third order is derived. Asymptotical analysis of this
system allows to investigate the scaling regime, which develops on the late stages of evo-
lution and to extract additional information concerning the rate of decrease of the specific
volume of disordered regions and the rate of decrease of the average thickness of antiphase
boundaries. Comparison of these results to experimental data is given. The quench below
the spinodal and the onset of long-range order may be separated by the incubation time,
whose origin is different from that in first-order phase transitions. Numerical integration of
equations for correlators shows also, that it is possible to prepare a sample in such a way
that its further evolution will go with formation of transient kinetically slowed polydomain
structures different from the final L12 structure.

Keywords Connected long-range order parameters · Polydomain ordering · Statistical
approach

1 Introduction

Order-disorder phase transitions in systems with the degenerate ground state go with for-
mation of a polydomain structure. Domains in such a structure, being physically equivalent,
differ either by crystallographic orientation or by inversion of atomic distribution over the
equivalent sublattices.

E.P. Feldman (�)
Institute for Physics of Mining Processes of NAS of Ukraine, Donetsk 83114, Ukraine
e-mail: feldman@depm.fti.ac.donetsk.ua

L.I. Stefanovich · K.V. Gumennyk
Galkin Institute for Physics and Engineering of NAS of Ukraine, Donetsk, Ukraine

mailto:feldman@depm.fti.ac.donetsk.ua


502 E.P. Feldman et al.

By now thermodynamically equilibrium states in systems described by one or several
long-range order parameters have been determined and classified.

At the same time various kinetic characteristics of ordering, times of formation of a do-
main structure, temporal evolution of its length scales such as the size of antiphase domains
(APD) and the thickness of transitive regions (antiphase boundaries, APB) are not fully
explored. This is connected not so much with the accuracy and simplicity of the adopted
kinetic equations as with the necessity of the statistical approach to the problem.

Let us bring an example. Consider a binary alloy, which is rapidly quenched from a
high-temperature disordered phase, to a sufficiently low temperature where a long-range or-
der is expected to develop. Immediately after the quench the alloy is characterized by the
high-temperature random fluctuations of the order parameter(s). It is clear that the relevant
statistical characteristics of these fluctuations will determine the kinetics (especially a poly-
domain one) of ordering. Mathematically this is explained by the fact that the quenched-in
random fluctuations of the order parameters enter the initial conditions for kinetic equations.
Thus the problem of polydomain ordering can be posed as finding the solution of determin-
istic equations subject to random initial conditions.

We shall demonstrate our statistical approach to the problem of polydomain ordering by
the example of an alloy AuCu3 crystallizing into an fcc lattice and described by four or-
der parameters (according to the number of sublattices building fcc lattice). Various aspects
of ordering kinetics in this alloy have been previously discussed in many works (see e.g.
[1–4]). It was noticed in particular, that ordering can be initiated either via nucleation or
by delocalized fluctuations as a second-order phase transition [2]. These two mechanisms
have been observed both in experiments [3] and in computer simulation studies. X-ray scat-
tering experiments permit to determine the pair correlator of the order parameter and to
trace the crossover of the character of the corresponding random field from Gaussian to
non-Gaussian.

Ordering in alloys with the number of sublattices bigger than two, proceeds in a com-
plex way, involving formation of APDs of many types. Description of this process requires
introducing several order parameters {pi}; at equilibrium they assume certain values {pie}.
Usually parameters pi are physically equivalent; therefore their various transpositions rep-
resent physically equivalent ordered structures. This leads to existence of the corresponding
number of types of APDs. Besides there can be nonequivalent ordered structures, not result-
ing from each other by a simple transposition of order parameters.

Phenomenological description of ordering kinetics in alloys includes deriving and solv-
ing kinetic equations for time- and space-dependent long-range order parameters pi(r, t).
Although the principal scheme for derivation of such equations is already developed (see
[5, 6]), its practical realization is connected with substantial difficulties.

For this reason in the present paper we limit ourselves to fcc binary alloys of AuCu3 type
and the strictly stoichiometrical composition 25 at.% Au. We do not account for possible
variations of concentration and focus only on the changes in degree of local order.

Kinetics of homogeneous single-domain ordering in AuCu3 has been studied in [7]. It
also can be viewed as description of ordering within a single domain entering the polydo-
main structure.

We are interested in formation and development of a polydomain structure, where pos-
sible types of ordering are L12 and L10, and the corresponding number of types of APDs
may arise.

Structure and evolution of nonequilibrium inhomogeneous alloys are widely discussed
and investigated, e.g. in [6, 8]. Some authors derive microscopic dynamical equations bas-
ing on the concept of chemical potentials, attributed to each lattice site, and solve them
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numerically [9]. In other studies ordering dynamics is computer simulated by Monte Carlo
method [10].

Our phenomenological approach allows to obtain in a compact and clear form some
general relations pertaining not only to ordering kinetics of the considered alloy, but also, as
we hope, to kinetics of various phase transformations, going with formation of a polydomain
structure. Most general issues of such kinetics were discussed by Lifshitz in [11].

In this paper we modify the previously proposed [12] statistical approach in order to
give the phenomenological description (by the example of the AuCu3 alloy) for phase trans-
formation kinetics proceeding without nucleation, and characterized by several equivalent
order parameters.

2 The Model and the Dynamic Equations

Let us consider a binary alloy of the AB3 stoichiometry (25 at.% of the component A), which
crystallizes into a fcc lattice and is a solid substitution solution. Vacancies are neglected. All
sites of the fcc lattice are geometrically and energetically equivalent. Following Shockley
[13] we shall divide the fcc lattice into four interpenetrating simple cubic sublattices, shifted
with respect to each other by half of the face diagonal of the initial cube.

It is natural to characterize ordering of the alloy by distribution of the atoms A, and thus,
automatically, of the atoms B , over the sites of the four specified sublattices. For example,
in the state of complete order at T = 0, all atoms A are in the sites of one of the sublattices,
whereas the atoms B occupy all sites of the other three. At high temperatures the alloy is
disordered and the atoms A are distributed randomly and evenly over the four sublattices.

Therefore we shall use the occupation probabilities pi
A = pi (i = 1, . . . ,4), being the

probabilities to find an atom A in the site of each of the sublattices, as the long-range order
parameters; and so it is already established in literature [14]. The four parameters so chosen
are equivalent to each other due to equivalence of the four sublattices of an fcc lattice.

These parameters are not independent since their sum is, obviously, equal to concentra-
tion of the alloy multiplied by four

4∑

i=1

pi = 1. (1)

We shall not consider in this paper concentration decomposition of the alloy, therefore
(1) is valid at any point in the sample and for any instant of time.

It is necessary to say, that ordering in alloys is, generally speaking, accompanied by
diffusion mass transfer of atoms [15, 16] over distances much exceeding interatomic one.
Ordering itself is not a diffusion process. The ratio between the corresponding characteristic
times (diffusion and non-diffusion) is of the order (d/r0)

2 � 1, where d is the size of the
domain, and r0 is the quantity of the order of interatomic distance.

Hence for times not too late, aiming to reveal features inherent to ordering itself, it is
possible to neglect the accompanying diffusion processes.

Relation (1) is fulfilled if to associate the parameters pi with the lengths of the four
perpendiculars dropped from an arbitrary point inside a regular tetrahedron (with the height
equal to unity) onto its faces.

Hence there is a one-to-one correspondence between possible states of ordering of the
alloy of AuCu3-type and points lying inside the tetrahedron (Fig. 1) [17]. This allows to
give an illustrative geometrical representation of an ordering process as a motion of one or
several points along certain trajectory (trajectories) inside the tetrahedron.
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Fig. 1 Configurational space of
the long-range order parameters
of AuCu3 alloy

Our investigation will be based on the expression for configurationally dependent part of
thermodynamic potential of the alloy, written in the form of Ginzburg–Landau functional:

�{pi,∇pi;T } =
∫

V

[
ϕ(p1, . . . , p4) + r2

0

2

4∑

i=1

(∇pi)
2

]
ndV. (2)

Here ϕ(p1, . . . , p4;T ) is the alloy free energy calculated for one lattice site, n = 4N/V , N

is the number of sites in one sublattice, V is the volume of the sample, r0 is the interaction
radius.

Function ϕ corresponds to a homogeneous ordering. It has been obtained previously [17]
using Gorsky–Bragg–Williams theory and the nearest-neighbor approximation. Within this
approximation interaction is characterized by one parameter w called the mixing energy.
Here is the expression for ϕ, in which all quantities with the dimension of energy are nor-
malized to the mixing energy:

ϕ(p1, . . . , p4; θ) ≡ F

4Nw
= −1

2

4∑

i=1

p2
i + θ

4

4∑

i=1

[pi lnpi + (1 − pi) ln(1 − pi)], (3)

where θ = T/w is the temperature of the alloy normalized to w.
Further analysis of the ordering process will be carried out in the continuum approxima-

tion; the parameters pi in (1), (2), (3) and henceforth will be regarded in general as functions
of space coordinates and time, pi = pi(r, t). Constraint (1) is valid for any instant of time at
any point of the sample due to the assumption of homogeneity of concentration.

The problem is posed as follows. At the instant of time, taken for initial, all pi (i =
1, . . . ,4) are set as function of coordinates:

pi(r,0) = pi0(r); (4)

the temperature is fixed. Then we follow the evolution of the fields of the order parameters
pi(r, t) at the fixed temperature.

To achieve our goal we must derive the system of kinetic equations for pi(r, t). But first
we should dwell on the problem of thermodynamic equilibrium of the alloy. This problem is
solved in [6, 13, 18]. Let us discuss some results of these references, which will be necessary
for further consideration, with the help of the geometrical representation of ordered states
described above (Fig. 1) and the energy diagram of phase equilibria (Fig. 2).

At high temperatures (θ > θc) there is only one state of thermodynamic equilibrium
represented by the center of the tetrahedron (point O in Fig. 1, p1e = p2e = p3e = p4e =
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Fig. 2 Energy diagram of phase
equilibria of AuCu3 alloy

1/4). This equilibrium is stable. It corresponds to the completely disordered state. In the
temperature interval θs < θ < θc there are three equilibrium states. One of them, represented
by the point Sh (and the equivalent points) on the tetrahedral height, corresponds to a saddle
point of the free energy in the {pi}-space (tetrahedral space). Hence, this equilibrium is
unstable. In the energy diagram (Fig. 2) all states of unstable equilibrium are indicated by
dashed lines.

The state represented by the point E (and by the three equivalent points located on tetra-
hedral heights near the vertexes) corresponds to a minimum of the free energy in the tetrahe-
dral space. Hence, this equilibrium is stable. It corresponds to the ordered state when atoms
of gold concentrate mainly in the sites of one of the sublattices. Obviously, there are four
equivalent ordered variants of such type (L12). At the temperatures ranging from θs up to θc

the disordered state remains stable, at the point O in the tetrahedral space the function ϕ has
a minimum. In the interval θI < θ < θc the minimum of ϕ at the point O is deeper than the
minimum at the point E; in the interval θs < θ < θI it is the opposite. Hence it is considered
that above the point θI the alloy will finally prefer the disordered state, and below θI it will
be ordered by the type L12.

In the low temperature region, θ < θs , there are four nonequivalent equilibrium states
(points O,Sh,Sm on the tetrahedral medians and the point E), only one of them being
stable (point E). The center of the tetrahedron will at low temperatures give a maximum
to ϕ, whereas Sh and Sm will be its saddle points.

Points not coinciding with the extrema in the tetrahedral space and, hence, not falling on
the lines in the phase diagram (Fig. 2), represent nonequilibrium states. On practice these
states can be realized, for example, by a rapid cooling (quench) of the alloy from the high
temperature region (θ > θc) to the temperatures below θc . Such quenching fixes initially the
high-temperature disordered state, which is nonequilibrium at the quenching temperature.
Then follows the evolution to the equilibrium state. Our task is to follow the ways, rates and
possible intermediate stages of the disorder-order transition.

Let us introduce the nonequilibrium chemical potential of i-th sublattice (i = 1, . . . ,4),
as a function of time and space coordinates

μi(r, t) ≡ δ�

δpi

= ∂ϕ

∂pi

− r2
0 �pi, (5)
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� being the Laplacian, and the mean chemical potential of the alloy

μ = 1

4

4∑

k=1

δ�

δpk

. (6)

The system of kinetic equations describing the alloy relaxation towards an equilibrium, is
derived through non-trivial generalization of Allen-Cahn equation [19] (which in its turn is
based on the Ginzburg-Landau approach). The original Allen-Cahn equation governs evo-
lution of a single non-conserved order parameter. In our case there are four non-conserved
order parameters such, however, that their sum is conserved. The necessary generalization is
achieved by introducing the concept of partial chemical potentials of the four sublattices and
the mean chemical potential of the alloy (5), (6). Thus we arrive to the following system:

∂pi

∂t
= −γ (μi − μ), i = 1, . . . ,4. (7)

Here μi is given by (5); γ is the kinetic coefficient proportional to the frequency of elemen-
tary interatomic exchanges.

The above symmetrical form of kinetic equations for several connected order parame-
ters, which to our knowledge has not yet been proposed, reflects on one hand the physical
symmetry of the problem (any transpositions of the four parameters pi does not change the
form of the system), and on the other hand permits to proceed in a simple and clear way to
statistical description of alloy by means of a minimal number (two) of correlators.

System (7) can also be deduced from the postulate that the evolution of a nonequilibrium
system follows a trajectory of the steepest descent of the free energy in the configurational
tetrahedral space [20]. It is easy to see that (6) and (7) automatically hold the constraint (1).

Since we wish zero values of the order parameters to correspond to the disordered phase,
let us introduce the new parameters ηi through the formulas

ηi = pi − 1

4
, i = 1, . . . ,4. (8)

Constraint (1) will then become

4∑

i=1

ηi(r, t) = 0. (9)

Proceeding to the modified order parameters and introducing the dimensionless radius—
vector x and time τ through the formulas

r = r0x; τ = γ t, (10)

permit to rewrite the system (7) in a well-comprehensible form

∂ηi(x, t)

∂τ
= �ηi(x, τ ) + 1

4

4∑

k=1

∂ϕ

∂ηk

− ∂ϕ

∂ηi

, i = 1, . . . ,4. (11)

Let us now, in a customary way, use the approximate expression for the free energy ϕ(ηi),
expanding it into a Taylor series in the powers of ηi and keeping terms up to the fourth
power.
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Using the explicit form (3) of the free energy, we obtain

ϕ(ηi, θ) ≈
4∑

i=1

[
−1

2
α(θ)η2

i − a

3
η3

i + b

4
η4

i

]
, (12)

where

α(θ) = 1 − θ

θs

, a = 4

3
, b = 112

27
, (12′)

θs is the spinodal ordering temperature; in our model θs = 3
4 .

Approximating function (3) with the expansion (12) is in fact strictly justified only for
ηi � 1 and |θ − θs | � 1. However, polynomial (12) reproduces correctly the qualitative
profile of the free energy in the whole range of variation of ηi .

The initial conditions for the kinetic equations (11) (where ϕ is substituted by (12))
are given by formula (4). Certainly they must fulfill the relation

∑4
i=1 pi0(x) = 1, i.e.∑4

i=1 ηi0(x) = 0 for all x.
The prime physical interest in both experiment and theory is attracted to the case when

the initial state is obtained by quenching the alloy from high temperatures down to the
temperatures close to ordering spinodal θs .

As the alloy is quenched the high-temperature fluctuations of the order parameters are
“frozen” in the sample. Therefore in different regions of the sample different initial condi-
tions for further ordering are created. If the quenching temperature is close to θs ordering can
be realized according to one of the four equivalent types. In other words, in different parts
of the sample conditions are created for formation of APDs of four different but equivalent
types. Ordering process will consist, essentially, in formation and development of a polydo-
main structure; in each domain will be realized one of the four possible ordered structures
of the L12 type. Since domains of different types are physically equivalent and the initial
conditions at quenching do not give preference to any of these types the volumes occupied
by domains of each of the four types will be equal.

The “quenched-in” high-temperature fluctuations of the order parameters are random
functions of coordinates, which play the role of initial conditions (4) at solving the sys-
tem of kinetic equations (11). Mathematically the problem consists in solving the system
of determined equations with random initial conditions. Hence, the solution at any moment
will be a set of random functions of coordinates. Certainly, the physical interest is not in the
random fields of the order parameters themselves, but instead in some of their averaged char-
acteristics (moments and correlation functions). Since we deal with formation and evolution
of a polydomain structure, we carry out averaging over the volume much bigger than this
of one domain. We assume, that this averaging is equivalent to averaging over the ensemble
of realizations generated by the initial conditions. As usual, we make assumption about the
statistical homogeneity and isotropy of the problem. The described statistical approach to
the problem of polydomain ordering has been previously suggested by us in [6, 12].

It can be pointed out right away that the average value of any of the four order parameters
is equal to zero. Indeed, an arbitrary point of the alloy can belong by chance and with equal
probability to any of the four types of domains, which grow in the sample. Therefore, it is
quite natural, that the average value 〈ηi(x, t)〉 = 0. Let us give another proof of this statement
based on averaging the equality (9):

〈
4∑

i=1

ηi(x, t)

〉
=

4∑

i=1

〈ηi(x, t)〉 = 0.
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Since, due to equivalence of the order parameters, all averages 〈ηi〉 are equal to each other,
each of them is equal to zero as well. We recall that the initial conditions do not give prefer-
ence to any of the four order parameters. Let us notice also, that it is the average squares of
the order parameters, that play the principal role in analysis of the experimental data [8, 21].

The peculiarity of our problem is the average cube of any of the order parameters not
being identically equal to zero. This can be readily verified by direct calculation for a de-
veloped polydomain structure with the account for the fact that domains of all four types
occupy equal volumes.

Within the framework of the statistical approach the progress of multidomain ordering
is indicated, essentially, by the increase of the average squares of the order parameters and
evolution of their pair correlation functions.

In this situation we conclude, that the stochastic fields of the order parameters will be
characterized fully enough by the correlation functions of the second and the third order.
These functions will give a satisfactory description of structural evolution of an alloy of
AuCu3-type at the isothermal annealing.

3 The System of Equations for Correlation Functions

Within the framework of the statistical approach let us introduce the correlation functions of
the second and the third order

Kik(s, τ ) = 〈ηi(x′, τ )ηk(x, τ )〉; Gik(s, τ ) = 〈η2
i (x

′, τ )ηk(x, τ )〉, (13)

where s = |x′ −x|, and angular brackets indicate averaging over the ensemble of realizations
of the random order parameters. Here we assume the statistical homogeneity and isotropy
of the studied system.

By virtue of equivalence of all four sublattices and by virtue of statistical homogene-
ity of the initial conditions, all diagonal correlation functions of the second order can be
considered equal to each other and defined as:

K(s, τ ) = Kii(s, τ ) = 〈ηi(x′)ηi(x)〉 = 〈η′
iηi〉, i = 1, . . . ,4. (14)

The same statement applies as well to non-diagonal correlation functions, which we shall
designate as

K̃(s, τ ) = Kik(s, τ ) = 〈ηi(x′)ηk(x)〉 ≡ 〈η′
iηk〉 (i 
= k). (15)

From equality (9) follows the relation between the diagonal and non-diagonal correlation
functions of the second order:

K(s, τ ) + 3K̃(s, τ ) = 0. (16)

All said above applies as well to correlators of the third order, therefore the relation holds:

G(s, τ ) + 3G̃(s, τ ) = 0. (17)

Differentiating any correlation function of the second order (i.e. the first of expressions
(13)) with time, and, accounting for the symmetry with respect to replacement x ↔ x′, we
obtain the system of, generally speaking, sixteen kinetic equations of the kind

∂Kik

∂τ
= 2

〈
η′

i

∂ηk

∂τ

〉
, i, k = 1, . . . ,4. (18)
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Using the dynamic equations (11) and (12) for free energy, let us transform the right-hand
side of (18). It can be shown that because the diagonal correlation functions of the second
order are equal to each other and the same is valid for the non-diagonal correlators, and by
virtue of relation (16), all sixteen equations (18) are equivalent. We can therefore consider
the kinetic equation only for the diagonal correlation function. It reads as follows:

∂K(s, τ )

∂τ
= 2

[
�K(s, τ ) + αK(s, τ ) + aG(s, τ ) + b

(
1

4

4∑

k=1

〈η′
iη

3
k〉 − 〈η′

iη
3
i 〉

)]
, (19)

where G(s, τ ) is the diagonal correlation function of the third order defined by the second
of (13). In order to uncouple the averages in the last two terms of (19) we assume, that the
random field of the long-range order parameter ηi(r, τ ) has a character close to Gaussian.
Then we obtain the following representations of the averages:

〈η′
iη

3
i 〉 = 3Kii(0, τ )Kii(s, τ ) ≡ 3K(0, τ )K(s, τ ), (20)

〈η′
iη

3
k〉 = 3Kkk(0, τ )Kik(s, τ ) ≡ 3K(0, τ )K̃(s, τ ) = −K(0, τ )K(s, τ ). (21)

Substituting (20) and (21) in (19) gives:

∂K(s, τ )

∂τ
= 2[�K(s, τ ) + (α − 3bK(0, τ ))K(s, τ ) + aG(s, τ )]. (22)

Likewise, differentiating expression (13) for correlation function of the third order
Gik(s, τ ) with time and taking into account the symmetry with respect to replacements
x ↔ x′ and i ↔ k give the kinetic equations for correlation functions of the third order

∂Gik

∂τ
= 3

〈
(η′

i )
2 ∂ηk

∂τ

〉
, i = 1, . . . ,4. (23)

Using expressions (11), (12) and taking into account relation (17) it is easy to show, that
the equations for diagonal and non-diagonal components of the correlation function Gik are
equivalent; therefore instead of sixteen equations (23) we have only one kinetic equation of
the kind

∂G

∂τ
= 3

[
�G+αG+ a〈(η′

i )
2η2

i 〉− b〈(η′
i )

2η3
i 〉− a

4

4∑

k=1

〈(η′
i )

2η2
k〉+ b

4

4∑

k=1

〈(η′
i )

2η3
k〉

]
. (24)

In order to close the system of equations for correlators of the second and the third order,
we shall uncouple the averages in the last four terms of (24), basing on simple combinatory
considerations. Let us notice that immediately after the quench as well as on early stages of
evolution the field of order parameters is Gaussian due to the Gaussian character of the fixed
high-temperature fluctuations (see e.g. [3, 22]). In case of a Gaussian field combinatory
considerations, which we adopt to uncouple correlators, give the exact results (for even-
order correlators, of course). It is quite natural to presume that the use of the same method
for uncoupling correlators of both even and odd order will give acceptable results on all
stages of evolution. Thus we have

〈(η′
i )

2η2
i 〉 = K2(0, τ ) + 2K2(s, τ ); (25)

〈(η′
i )

2η2
k〉 = K2(0, τ ) + 2K̃2(s, τ ) = K2(0, τ ) + 2

9
K2(s, τ ); (26)
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〈(η′
i )

2η3
i 〉 = K(0, τ )G(0, τ ) + 3K(0, τ )G(s, τ ) + 6K(s, τ )G(s, τ ); (27)

〈(η′
i )

2η3
k〉 = K(0, τ )G(0, τ ) + 3K(0, τ )G(s, τ ) + 6K̃(s, τ )G̃(s, τ ). (28)

Then, in view of relation (17) and equalities (25)–(27), (24) takes on the form

∂G

∂τ
= 3

[
�G(s, τ ) + [α − 3bK(0, τ )]G(s, τ ) + a2K2(s, τ ) − 4bK(s, τ )G(s, τ )

]
. (29)

Finally, with the account for (22) and (29) we obtain the following system of equations for
correlators of the second and the third order, which describes evolution of the alloy from a
nonequilibrium state to a stable thermodynamic equilibrium:

{
∂K(s,τ )

∂τ
= 2[�K(s, τ ) + (α − 3bK(0, τ ))K(s, τ ) + aG(s, τ )],

∂G(s,τ )

∂τ
= 3[�G(s, τ ) + [α − 7bK(0, τ )]G(s, τ ) + a2K2(s, τ )]. (30)

4 Asymptotic Analysis of the Ordering Process at Long Times

We adopt the scaling hypothesis, i.e. we assume that there exists a single characteristic length
scale, which determines the statistical properties of the domain structure. If so, at any instant
of time correlation function of the second order is characterized mainly by the correlation
radius rc(τ ) and the dispersion D(τ) ≡ K(0, τ ). Hence in the limit s → 0 the first of (30)
can be presented as

dK(0, τ )

dτ
∼= −2K(0, τ )

r2
c (τ )

+ 2(α − 3bK(0, τ ))K(0, τ ) + 2aG(0, τ ). (31)

On the other hand, Fourier-transformation by coordinates of the first of (30) gives

dK(0, τ )

dτ
=

[
−2q2 + 2α − 6bK(0, τ ) + 2a

G(0, τ )

K(0, τ )

]
K(q, τ). (32)

The solution of the latter equation can be written as

K(q, τ) = K(0, τ ) exp(−2q2τ)ψ(τ), (33)

where

ψ(τ) = exp

{∫ τ

0

(
2α − 6bK(0, τ ) + 2a

G(0, τ )

K(0, τ )

)
dτ

}
. (34)

Using Fourier-transform of the correlation function, i.e. K(q, τ ), gives the relation

1

r2
c (τ )

=
∫

q2K(q, τ )d3q∫
K(q, τ )d3q

, (35)

where K(q, τ ) is defined by expressions (33) and (34). The initial correlation radius at the
moment of quench rc(0) is found by the limiting transition τ → 0, i.e.

1

r2
c (0)

=
∫

q2K(q,0)d3q∫
K(q,0)d3q

. (36)
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From (35) and (33) it is easy to determine the asymptotic form of the correlation radius at
long times (τ → ∞), which is 1/r2

c (τ ) ∼ 1/τ . More exact calculation yields the following
interpolating formula:

rc(τ ) ≈
√

r2
c (0) + 4

3
τ . (37)

It is quite natural to associate the correlation radius with the average domain size. For-
mula (37) confirms the well-known conclusion (see e.g. [11, 22]) that the length scale of
domain structure grows proportionally to the square root of time (Lifshitz-Cahn-Allen law).
This result is deduced here from the independent and general considerations.

Computer simulation studies [23, 24] of ordering kinetics show that Lifshitz-Cahn-Allen
law is in general fulfilled. Possible deviations can be due to anisotropy and the role of va-
cancies [23].

Interpolating formula (37) indicates the possibility of a crossover from the linear regime
of domain growth at early times to the square-root law for late times. Such kinetics was
experimentally observed by the X-ray intensity fluctuation spectroscopy [25] and time-
resolved X-ray scattering [26].

By virtue of the scaling hypothesis the spatial dependences of correlators of the second
and the third order coincide. Hence, on basis of (30), (31) and in consequence of interpo-
lating formula (37), it turns out that at late times the moments 〈η2

i 〉 and 〈η3
i 〉 approach their

equilibrium values according to the law

〈η2〉e − 〈η2(τ )〉 ∼ 1/τ. (38)

Within each particular domain the long-range order parameter achieves its equilibrium value
〈η2〉e exponentially fast [8]. Meanwhile the disorderliness in between the domains (i.e. in the
antiphase boundaries) persists for a long while. The slow relaxation of the average square
of order parameters (38) is resulted by slow decrease of the specific volume of disordered
antiphase boundaries

νAPB ∼ 1/τ. (39)

This is in fact a quantity accessible by conductivity experiments. Formula (39) is in agree-
ment with the experimental data from [27], where ordering kinetics in the specific alloy
Cu3Au was investigated by measuring its time-resolved residual resistivity.

Additional information can be extracted from the law (39) on how the domain walls
thickness varies in the process of ordering. Since the specific area of APBs has the dimension
of the reciprocal length SAPB ∼ 1/rc(τ ) ∼ 1/

√
τ , their thickness decreases proportionally

to inverse square root of time

δ ∼ 1/
√

τ . (40)

Of course, this result is relevant only if the annealing temperature is close to spinodal, i.e.
α ≡ Ts−T

Ts
� 1. In this case at times ∼ τ0/α(τ0 ≈ 1/γ ) form the long-wave fluctuations with

the correlation length ∼ r0/
√

α . This length is naturally corresponded to the extent of the
transition regions between domains. At further evolution domains grow, starting from this
correlation length, and the transition regions shrink starting from the same size down to r0

proportionally to 1/
√

τ . Certainly, dependence (40) loses meaning when the thickness of
domain walls becomes ∼ r0.

The main interest lies in the analysis of the system of equations (30) near the spinodal
temperature θs when |α| � 1 and the initial correlation radius is sufficiently small, so that
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r2
c (0) � (1/α) � L2, where L is the characteristic dimension of the crystallite (we recall,

that time is being measured in the units of γ −1, and the spatial dimensions—in the units
of r0—the radius of interatomic interaction). Then, asymptotically, at times t � 1/α, in the
limit s → 0 and in view of representation (31) and interpolating formula (37), the system of
equations (30) becomes

{
1
2

∂K(0,τ )

∂τ
= [α − 3bK(0, τ )]K(s, τ ) + aG(s, τ ),

1
3

∂G(0,τ )

∂τ
= [α − 7bK(0, τ )]G(s, τ ) + a2K2(s, τ ),

(41)

with the initial conditions

K(0,0) = K0, G(0,0) = G0, (42)

reflecting the initial dispersion of the long-range order parameter (K0) and the initial asym-
metry of the random field of the order parameter (G0).

Analysis of the system of equations (41) with the initial conditions (42) permits to ob-
tain information about the late stages of the ordering process. However even this simpli-
fied system cannot be solved analytically. We shall carry out its qualitative analysis bas-
ing on stability theory of Lyapunov. Introducing denotations K(0, τ ) ≡ 〈η2(τ )〉 = x(τ) and
G(0, τ ) ≡ 〈η3(τ )〉 = y(τ), we shall rewrite system (41) as

{
1
2

dx
dτ

= (α − 3bx)x + ay,

1
3

dy

dτ
= (α − 7bx)y + a2x2.

(43)

Let us find stationary points of system (43) in the limit τ → ∞. In this case lhs’s of (43) tend
to zero and the stationary points are defined by the following system of algebraic equations:

{
(α − 3bx)x + ay = 0,

(α − 7bx)y + a2x2 = 0.
(44)

Solving it gives the following results. At α > 0, i.e. at temperatures lower than θs , the system
has three stationary points (see Fig. 3a). One of them, with coordinates x = 0, y = 0, is an
unstable node and corresponds to the homogeneous disordered phase, which, as already
mentioned, is unstable at these temperatures (see Fig. 2). The second point is a stable node
and represents the ordered state on the line E in Fig. 2. The third point is a saddle. The latter
represents in a generalized form the unstable equilibriums on the heights and medians of the
tetrahedron (Sh and Sm).

Suppose we start from a certain point of “general position” in the phase diagram. The
system will then evolve towards an ordered state.

At some specific initial conditions when the initial asymmetry 〈η3〉0 is negative, the alloy
“lingers” for a certain while near the saddle point, i.e. an intermediate, long-living structure
is formed.

At α < 0 the system also has three stationary points, but the node x = 0, y = 0 is stable
this time, and the saddle point moves to the first quadrant (Fig. 3b). Thus there are two
stable nodes, one of which corresponds to the ordered state, and the other to the disordered
one. This is completely consistent with the diagram in Fig. 2. We see, that depending on the
initial conditions, the system may come to one of the two stable equilibria. Instead of being
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Fig. 3 (a) Phase-plane portrait
of the ordering alloy for α = 0.4.
(b) Phase-plane portrait of the
ordering alloy for α = −0.0294

(a)

(b)

determined by the depth of the potential well, this choice will depend upon the proximity
of the initial state to this or that equilibrium. Certainly, in the process of further evolution
the alloy will finally arrive to the state corresponding to a deeper well, but this transition
will proceed by nucleation and subsequent growth of nuclei, i.e. by an essentially different
mechanism, than considered here.

Thus, depending on the technological prehistory, at θ > θs evolution of the alloy may
occur either in one stage as a second order-phase transition, or in two stages, so that a second-
order transition will be followed by the first-order one. These phenomena were discussed
separately in a number of studies (see e.g. [2]). Here we emphasize the possibility of their
sequential occurrence, leading to either one- or two-stage scenario of evolution, determined
by the thermal prehistory of the sample.

Apart from this the delay of the alloy in a state with intermediate long-living structure
(point Sh of the tetrahedron) is possible.
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At further rise in temperature the saddle point and the stable node, representing the or-
dered phase, merge and disappear according to the expressions

x1.2 = 2a2 + 15αb

63b2

[
1 ±

√

1 − 189α2b2

(2a2 + 15αb)2

]
, y1,2 = 3b

a
x2

1,2. (45)

In the diagram in Fig. 2 this situation corresponds to the point of ending of the lines E

and Sh at the temperature θc . At temperatures exceeding θc there remains only one station-
ary point in the phase diagram—the stable node in the origin representing the disordered
homogeneous phase.

5 Analysis of the Full Evolutionary Equations

Asymptotical analysis of the ordering process carried out in the previous section gives its
full qualitative picture. In order to specify the details, in particular, of the initial and the
intermediate stages of ordering it is necessary to solve the full system of equations (30)
which, with the account for (31) and (37) can be written as

{
1
2

∂K(0,τ )

∂τ
= [αeff (τ ) − 3bK(0, τ )]K(0, τ ) + aG(0, τ ),

1
3

∂G(0,τ )

∂τ
= [αeff (τ ) − 7bK(0, τ )]G(0, τ ) + a2K2(0, τ ),

(46)

where

αeff (τ ) = α −
(

4

3
τ + r2

c (0)

)−1

. (47)

Note that one of the coefficients in system (46) depends explicitly on time. This does not
change the results of the qualitative analysis of behavior of the system at long times; only
the quantitative estimations of the relaxation time of the nonequilibrium alloy and of char-
acteristic spatial scales may vary.

We have solved numerically the full system of equations (46) in order to follow all stages
of evolution of the ordering system. The numerical analysis was carried out for different
quenching temperatures θ and for various initial sizes of the ordered regions, which arose
as a result of quenching (i.e. were varied the parameters α and rc(0)). In addition, subject
to variation were the initial dispersion and the asymmetry of the random field of the order
parameters. It turned out, that for sufficiently small (positive) values of α (i.e. for temper-
atures θ ≤ θs) and values of rc(0) ≥ 1, owing to change of sign of αeff (τ ) (see (47)), the
ordering process has a nonmonotonic character: at first the dispersion of the order parame-
ters D(τ) ≡ K(0, τ ) ≡ 〈η2

i (τ )〉 decreases, i.e. occurs the disordering of small “quenched-in”
fluctuations of the order parameters, and only then begins the formation and slow growth of
ordered antiphase domains (Fig. 4). Theoretical results presented above can be used, in par-
ticular, for explaining the size effect on ordering. As reported in [28, 29] the disorder-order
transition in FePt nanoparticles, epitaxially grown on a substrate, does not occur always at
temperatures lower than the phase transition point, but only if the size of particles exceeds
certain critical value (d ≥ r∗) where r∗ , depending on the substrate material, varies between
2–4 nanometers. In view of the above numerical results we may conclude, that the too small
size of the particles d < r∗ limits the growth of the correlation radius (expression (47)). This
results in suppression of the tendency of particles to exhibit long-range order (even at tem-
peratures θ ≤ θs). In Fig. 4 this corresponds to the section of the phase trajectory going to
the left (up to the turning point).
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Fig. 4 Phase trajectories of the
system for α = 0.01, rc(0) = 5,
and the initial conditions:
x0 = 0.002; y0 = 0.00001

Another meaning of the above result is that the incubation time, which precedes ordering
under above-spinodal quenches (see [2]) may also exist if the quenching temperature falls
below (but near) the spinodal. However, the reasons why the onset of long-range order is
delayed are different in these two cases. In first-order phase transitions the incubation time
is associated with formation of overcritical ordered nuclei. Unlike this, in case of second-
order transition, discussed in the present paper, the disordered phase may persist for a certain
while after the quench because of the small (of the order of interatomic distance) initial value
of correlation radius. Ordering does not progress until the range of correlations reaches r∗.

Another interesting feature, which is explicitly observed at numerical integration of (46),
is the possibility of formation of quasi-stationary intermediate polydomain structures cor-
responding to the Au3Cu type of ordering of the L12 symmetry. However they are realized
in a very narrow range of initial conditions and display themselves as intermediate hori-
zontal sections (like “plateaus” or “steps”) on evolutionary curves for x(τ) ≡ 〈η2(τ )〉 and
y(τ) ≡ 〈η3(τ )〉 (Fig. 5). This corresponds to the kinetic slowdown of the representing point
at the passing near the saddle point in the parametric diagram (Fig. 3a, b).

It follows from the numerical analysis, that for some specific initial conditions (x0, y0)

such metastable intermediate structures may survive for a noticeably long time. The order-
ing alloy, prior to achieving a thermodynamically stable structure formed by domains of the
ordered phase AuCu3 (represented by the stable node III in Fig. 3), remains for an apprecia-
ble time in a kinetically slowed state corresponding to a structure, consisting of antiphase
domains of Au3Cu-type (saddle point II in Fig. 3). The living time of such intermediate
structure is determined by the initial “frozen” fluctuations of the long-range order parame-
ters.

Numerical integration of system (46) shows also, that for phase trajectories passing far
from the saddle (point II in Fig. 3), ordering process occurs fast enough practically on all
the extent of the trajectory, except for a close vicinity of the stable node III (Fig. 3), where
is observed a slow (under the power law (38)) “ripening” of the polydomain structure due to
domain coarsening and thinning of antiphase boundaries. This confirms the known results
of numerical modeling of evolution of a polydomain structure in fcc alloys [8, 21].

It is worthwhile to dwell on the particular case when the alloy is quenched into a tempera-
ture interval θs < θ < θc . The parameter αeff will then remain negative in the whole course of
ordering process. This situation is presented in the parametrical plots (Fig. 6) obtained from
numerical integration of (46) for the fixed quenching temperature in the above-specified
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Fig. 5 Evolutionary curves for
〈η2(τ )〉 and 〈η3(τ )〉 obtained
from numerical integration of
system (46) for α = 0.04 and the
initial conditions x0 = 0.0001;
y0 = −0.00000143

Fig. 6 Phase trajectories of the
ordering alloy for r0 = 2000 and
α = −0.0294; the initial
conditions {x0;y0} →
{10−3, 1.4 × 10−3, 1.8 × 10−3,

2.1 × 10−3;0}

interval and various initial conditions. In Fig. 6 it is seen, that phase trajectories, starting
from the quenched fluctuations of sufficiently small amplitudes, are attracted to the stable
node in the origin (point I), i.e. such ordered regions, “dissolve” and turn into a homoge-
neous disordered phase A1. On the contrary, if the initial values of the dispersion x0 exceed
some critical value, there will be a formation of the stable polydomain structure consisting
of ordered domains of the type AuCu3.

Thus, numerical calculation confirms once again the conclusion that at θ ≥ θs evolu-
tion of the alloy, depending on its thermal prehistory, can proceed either in one stage as a
phase transition of the second order, with the direct formation of domains of the thermo-
dynamically stable phase AuCu3, or in two stages when first occurs the transition to the
homogeneous disordered phase A1 not accompanied by nucleation, and then follows the
first order phase transition to the stable AuCu3 phase. However the latter (nucleation) stage
of evolution remains beyond the framework of our consideration.
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6 Conclusions

In the present paper we modify the previously proposed statistical approach for description
of polydomain ordering kinetics in fcc alloys. Ordering is described through several order
parameters and evolution of their random spatial distribution after the temperature quench.
We obtain a closed system of differential equations for correlators of the second and the third
order, and on its basis analyse numerically all stages of evolution for various quenching tem-
peratures. The well-known square root law (∼√

τ) for growth of the average size of domains
is confirmed. In addition it is established, that at the stage of coarsening the thickness of an-
tiphase boundaries decreases proportionally to the inverse square root of time (∼1/

√
τ) and

the specific volume of disordered regions decreases as the reciprocal time 1/τ . It is shown
that for certain initial conditions at the intermediate stages of evolution may arise transitive
long-living kinetically slowed superstructures. Apart from these details development of a
polydomain structure consists essentially in formation and unlimited growth of ordered do-
mains of L12 type. In an infinite sample during polydomain ordering the thermodynamic
equilibrium is never achieved; there is only slowing-down of motion of antiphase bound-
aries.
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